JAVA ANTIDECOMPILER APl README

Source code security is an important part of security in general. Indeed the many attacks are directed to
the source code. On the other hand, the source code is the only valued thing you have after a few years
of hard work.

It's also clear that all your support, marketing, and customer relations will be rendered useless if your
code falls into the hands of a competitor or is stolen by an attacker.

Java developers are familiar with the scenario where a sold jar is recompiled and, with minor changes to
circumvent patent or intellectual property protection, appears on the markets and takes away a
significant part of the profit.

There are many source code protection tools for Java and Java-based languages. Among them, the most
modern and reliable means is byte code level protection. This means that during the protection process,
special transformations are carried out with the byte code, after which the original functionality of the
recompiled Java app can’t be restored, just as text encrypted, for example, using AES-256 cannot be
decrypted, even if there is the source of AES-256 algorithm.

We use the term API in the Apache sense, i.e. as a non-specialized library jar [+ dependencies] that can
be used in various projects. Therefore it can be sold independently.

Java Antidecompiler APl was successfully tested on the most popular Java APIs such as Log5j, JUnit,
commons-email, commons-cli, commons-net, commons-io, commons-lang3, commons-text, BCEL,
ASM, and Jakarta.mail.

As for increasing the size of the protected API, then

- First, free cheese only in a mousetrap, and

- Secondly, you can consider the additional size as the thickness of the protective wall for your
API or as third-party software, the size of which is usually not taken into account even if only a small part
is used.

Good luck,
BIS Guard Team

(C) 2024 BIS Guard & Co. All rights reserved. Modified June 23, 2024

E# Java Antidecompiler API Trial - commons-net-3.9.0,jar — X

BEIS GUARD & C€O0.

Protect-Package

|| org.apache.commons.net.daytime & Select Al
|__J org.apache.commons.net.discard

|| org.apache.commons.net.echo

(/] org.apache.commons.net finger

Y org.apache.commons.net fip

(/] org.apache.commons.net.ftp.parser v

Clear All

Ext | | Info | . Back | | Next

The dependencies screen is self-explained. We add them for the first time only.

B¢ Java Antidecompiler API Trial - commons-net-3.9.0.jar — X

BIS GUARD & CO.

Dependencies

s commons-lang3-3.16.0 jar Add Jar
(g app_jar
Remove
Exit Info

. Back | . Done |

Brief How It Works

We decompile all classes selected for protection from the source API jar and extract the headers only
from them. That is, the developer can see only field names without values, method headers without
bodies, and so on something like the following

| = ByteArrayDataSource.class - Java Decompiler - a
File Edit Mavigation Search Help
=l R dkek

=
| g commons-email-1.6.0.jar &3

[3 META-INF

Jb Email dass 2 b ByteArrayDataSource.lass &2, HimlEmail, dass 52
H# com.bisguard fur = [

package org.apache.commons.mail;

T =
- [ow commons-email-1.6.0.jar

= import com.bisguard.JavaPreloaderAPI;

- f# org.apache.commons. mail import java.ic.IOException; ()
- activation import java.io.InputStream;
-3 resolver import java.io.OutputStream;

import javax.activation.DataSource;

= public class ByteArrayDataSource implements DataSource {
public static final int BUFFER_SIZE = 8;

uh DefaultAuthenticator.dass
- fuh Emaildass

~fmp EmailAttachment, dass

- {mp EmailConstants.dass

public ByteArrayDataSource(byte[] paramArrayOfbyte, String paramString) throws IOException {}

public ByteArrayDataSource(InputStream paramInputStream, String paramString) throws IOException {}

- 3, EmailException. dass public ByteArrayDataSource(String paramStringl, String paramString2) throws IOException {}
- fp Emaillitils. dass
- 3, HtmlEmail$InlineImage. class = public String getContentType() {

oth HtmIEmail, class return null;

oh ImageHtmlEmail,class H
- arh MultiPartEmail.dass . ,
8 i SimpleEmail, class = public InputStream getInputStream() throws IOException {

— return null;

}

= public String getMame() {
return null;

H

o public OutputStream getOutputStream() {
return null;
H

public void setName(String paramString) {}

= static { @
JavaPreloaderAPI.init(StackWalker.getInstance(StackWalker.Option.RETAIN_CLASS_REFERENCE).getCallerClass());
H
H

where
1 —encrypted API jar invisible for SystemClassLoader and decompilers
2 —class after extraction headers for development time
3 —extracted class text
4 — callback method for switching ClassLoader’s

We differentiate between design time, where the user only sees skeletons of the classes, and runtime,
where the custom ClassLoader deciphers the APl when running the actual classes.

EXAMPLE. APl commons-email-1.6.0.jar

package user;
// from https://commons.apache.org/proper/commons-email/userguide.html

import org.apache.commons.mail.DefaultAuthenticator;
import org.apache.commons.mail.Email;

import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.SimpleEmail;

public class User_ EMAIL {
public static Object[] values;

public static void main(String[] args) throws EmailException {
values = args;

if (values.length < 3) throw new EmailException("Wrong argument number");

Email email = new SimpleEmail();
email.setHostName(args[0]);
email.setSmtpPort(465);
email.setAuthenticator(new DefaultAuthenticator(args[1], args[2]));
email.setSSLOnConnect(true);
try {
email.setFrom("taas@bisguard.com");
System.out.println("setFrom: success");
} catch (EmailException e) {
e.printStackTrace();
}

email.setSubject("Test Mail");

try {
email.setMsg("This is a test mail ... :-)");
System.out.println("setMsg: success");

} catch (EmailException e) {
e.printStackTrace();

}

try {
email.addTo("sales@bisguard.com");
System.out.println("addTo: success");

} catch (EmailException e) {
e.printStackTrace();

}

try {
email.send();
System.out.println("send: success");

} catch (EmailException e) {
e.printStackTrace();

}

}

The variable values are needed iff we want to pass parameters through a command

or from another class.

line

Command line class
package user;
import org.apache.commons.mail.EmailException;
public class User_ EMAIL_CMD {
public static void main(String[] args) {

String[] values = new String[3];
values[@] = hostname, e.g. "smtp.hostname.com";

values[1] = user;
values[2] = password;
try {

User_EMAIL.main(values);
} catch (EmailException e) {
e.printStackTrace();
}

Output:

Jun 23, 2024 4:37:57 PM com.bisguard.JavaPreloaderAPI init
INFO: com.bisguard.JavaPreloaderAPI TRIAL VERSION STARTED
Jun 23, 2024 4:37:57 PM com.bisguard.JavaPreloaderAPI init
INFO: user.User_EMAIL STARTED

setFrom: success

setMsg: success

addTo: success

send: success

Jun 23, 2024 4:38:06 PM com.bisguard.JavaPreloaderAPI init
INFO: user.User_EMAIL FINISHED

Jun 23, 2024 4:38:06 PM com.bisguard.JavaPreloaderAPI init
INFO: com.bisguard.JavaPreloaderAPI TRIAL VERSION FINISHED

Test Mail - Message (Plain Text) -

sun 23-Jun-24 617 AM

taas@bisguard.com
Test Mail

To sales@bisguard.com

This is a test mail ... -}

Recommendations

1. Do not try to protect all packages. This will increase the size of the protected
application and make it more difficult to work with.

2. Place all sensitive classes in one package or even into one class and select only
this one and the classes it depends on.

3. Avoid annotations, generics, lambdas, reflection, and any programming tricks
in sensitive classes. This can lead to unpredictable behavior of the protection
algorithm.

4. The security algorithm consists of several steps including decompilation,
parsing, byte code transformation, and some others, which may produce error
messages.

5. Fix all errors according to the log file in selected classes or packages under
protection. Other errors are not so critical and you can ignore them. The log file

is printed in trial mode only. To do this, you need to delete the file seriano in
the folder USER_HOME/.javaantidecompilerapi.

Good luck.

THE END

